Expanded GHOST database, supplement to: Leduc, Guillaume; Schneider, Ralph R; Kim, Jung-Hyun; Lohmann, Gerrit (2010): Holocene and Eemian Sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quaternary Science Reviews, 29(7-8), 989-1004


In this study we review a global set of alkenone- and foraminiferal Mg/Ca-derived sea surface temperatures (SST) records from the Holocene and compare them with a suite of published Eemian SST records based on the same approach. For the Holocene, the alkenone SST records belong to the actualized GHOST database (Kim, J.-H., Schneider R.R., 2004). The actualized GHOST database not only confirms the SST changes previously described but also documents the Holocene temperature evolution in new oceanic regions such as the Northwestern Atlantic, the eastern equatorial Pacific, and the Southern Ocean. A comparison of Holocene SST records stemming from the two commonly applied paleothermometry methods reveals contrasting - sometimes divergent - SST evolution, particularly at low latitudes where SST records are abundant enough to infer systematic discrepancies at a regional scale. Opposite SST trends at particular locations could be explained by out-of-phase trends in seasonal insolation during the Holocene. This hypothesis assumes that a strong contrast in the ecological responses of coccolithophores and planktonic foraminifera to winter and summer oceanographic conditions is the ultimate reason for seasonal differences in the origin of the temperature signal provided by these organisms. As a simple test for this hypothesis, Eemian SST records are considered because the Holocene and Eemian time periods experienced comparable changes in orbital configurations, but had a higher magnitude in insolation variance during the Eemian. For several regions, SST changes during both interglacials were of a similar sign, but with higher magnitudes during the Eemian as compared to the Holocene. This observation suggests that the ecological mechanism shaping SST trends during the Holocene was comparable during the penultimate interglacial period. Although this "ecology hypothesis" fails to explain all of the available results, we argue that any other mechanism would fail to satisfactorily explain the observed SST discrepancies among proxies.

DOI https://doi.org/10.1594/PANGAEA.737370
Related Identifier https://doi.org/10.1016/j.quascirev.2010.01.004
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.737370
Creator Leduc, Guillaume; Schneider, Ralph R; Kim, Jung-Hyun; Lohmann, Gerrit
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Publication Year 2010
Funding Reference German Science Foundation
Rights Creative Commons Attribution 3.0 Unported
OpenAccess true
Language English
Resource Type Supplementary Collection of Datasets
Format application/zip
Size 133 datasets
Discipline Earth System Research
Spatial Coverage (-158.190W, -50.000S, 179.500E, 74.998N); Canarias Sea; South Pacific Ocean; Eastern Basin; Alboran Sea; North Atlantic Ocean; Cayman Rise, Caribbean Sea; Caribbean Sea; North Pacific Ocean; Benguela Current, South Atlantic Ocean; South China Sea; South-East Pacific; Equatorial East Pacific; Gulf of Mexico; Northeast Atlantic; Portuguese Margin; Angola Basin; NE-Brazilian continental margin; Northeast Brasilian Margin; off Cameroon; Northern Red Sea; Congo Fan; North-West African margin; Southern Okhotsk Sea; East Pacific; Vietnam shelf; Sunda Shelf; Arctic Ocean; Pacific Ocean; Marmara Sea; Timor Sea; Kurilen Trench; Emperor Seamounts; Cocos Ridge; De Soto Canyon; Southern Ocean; Indian Ocean; Voring Plateau; Reykjanes Ridge; Marge Ibérique; Chatham Rise; Rockall; Indonesia; Arabian Sea; Bay of Bengal; Atlantic Ocean
Temporal Coverage Begin 1963-04-05T00:00:00Z
Temporal Coverage End 2003-02-27T06:25:00Z