Seawater carbonate chemistry and hypoxia tolerance and blood chemistry characteristics of European sea bass

DOI

Global environmental change is increasing hypoxia in aquatic ecosystems. During hypoxic events, bacterial respiration causes an increase in carbon dioxide (CO2) while oxygen (O2) declines. This is rarely accounted for when assessing hypoxia tolerances of aquatic organisms. We investigated the impact of environmentally realistic increases in CO2 on responses to hypoxia in European sea bass (Dicentrarchus labrax). We conducted a critical oxygen (O2crit) test, a common measure of hypoxia tolerance, using two treatments in which O2 levels were reduced with constant ambient CO2 levels (~530 µatm), or with reciprocal increases in CO2 (rising to ~2,500 µatm). We also assessed blood acid-base chemistry and haemoglobin-O2 binding affinity of sea bass in hypoxic conditions with ambient (~650 μatm) or raised CO2 (~1770 μatm) levels. Sea bass exhibited greater hypoxia tolerance (~20% reduced O2crit), associated with increased haemoglobin-O2 affinity (~32% fall in P50) of red blood cells, when exposed to reciprocal changes in O2 and CO2. This indicates that rising CO2 which accompanies environmental hypoxia facilitates increased O2 uptake by the blood in low O2 conditions, enhancing hypoxia tolerance. We recommend that when impacts of hypoxia on aquatic organisms are assessed, due consideration is given to associated environmental increases in CO2.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-04-02.

Identifier
DOI https://doi.org/10.1594/PANGAEA.914653
Related Identifier https://doi.org/10.1038/s41598-019-51572-4
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.914653
Provenance
Creator Montgomery, Daniel W; Simpson, Stephen D; Engelhard, Georg H; Birchenough, Silvana N R; Wilson, Rod W
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 1082 data points
Discipline Earth System Research