Sea-floor images from ROV transects during POLARSTERN cruise ANT-XVII/3 (EASIZ III) to the Weddell Sea, Antarctica

DOI

Transects of a Remotely Operated Vehicle (ROV) providing sea-bed videos and photographs were carried out during POLARSTERN expedition ANT-XVII/3 focussing on the ecology of benthic assemblages on the Antarctic shelf in the South-Eastern Weddell Sea. The ROV-system sprint 103 was equiped with two video- and one still camera, lights, flash-lights, compass, and parallel lasers providing a scale in the images, a tether-management system (TMS), a winch, and the board units. All cameras used the same main lense and could be tilted. Videos were recorded in Betacam-format and (film-)slides were made by decision of the scientific pilot. The latter were mainly made under the aspect to improve the identification of organisms depicted in the videos because the still photographs have a much higher optical resolution than the videos. In the photographs species larger than 3 mm, in the videos larger than 1 cm are recognisable and countable. Under optimum conditions the transects were strait; the speed and direction of the ROV were determined by the drift of the ship in the coastal current, since both, the ship and the ROV were used as a drifting system; the option to operate the vehicle actively was only used to avoide obstacles and to reach at best a distance of only approximately 30 cm to the sea-floor. As a consequence the width of the photographs in the foreground is approximately 50 cm. Deviations from this strategy resulted mainly from difficult ice- and weather conditions but also from high current velocity and local up-welling close to the sea-bed.The sea-bed images provide insights into the general composition of key species, higher systematic groups and ecological guilds. Within interdisciplinary approaches distributions of assemblages can be attributed to environmental conditions such as bathymetry, sediment characteristics, water masses and current regimes. The images also contain valuable information on how benthic species are associated to each other. Along the transects, small- to intermediate-scaled disturbances, e.g. by grounding icebergs were analysed and further impact to the entire benthic system by local succession of recolonisation was studied. This information can be used for models predicting the impact of climate change to benthic life in the Southern Ocean. All these approaches contribute to a better understanding of the fiunctioning of the benthic system and related components of the entire Antarctic marine ecosystem. Despite their scientific value the imaging methods meet concerns about the protection of sensitive Antarctic benthic systems since they are non-invasive and they also provide valuable material for education and outreach purposes.

Identifier
DOI https://doi.org/10.1594/PANGAEA.755490
Related Identifier https://doi.org/10.2312/BzPM_0402_2001
Related Identifier https://doi.org/10.4067/S0717-65382003000200007
Related Identifier https://doi.org/10.1007/s00227-003-1269-3
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.755490
Provenance
Creator Gutt, Julian ORCID logo; Starmans, Andreas ORCID logo; Teixidó, Núria
Publisher PANGAEA
Contributor Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
Publication Year 2010
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Publication Series of Datasets; Collection
Format application/zip
Size 20 datasets
Discipline Biospheric Sciences; Ecology; Geosciences; Natural Sciences
Spatial Coverage (-60.524W, -71.248S, -7.667E, -62.258N); Weddell Sea; Scotia Sea
Temporal Coverage Begin 2000-03-29T18:18:00Z
Temporal Coverage End 2000-05-06T15:16:00Z