9-28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse(Ctenolabrus rupestris)

DOI

Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-04-01.

Supplement to: Sundin, Josefin; Jutfelt, Fredrik (2016): 9-28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse(Ctenolabrus rupestris). ICES Journal of Marine Science, 73(3), 620-632

Identifier
DOI https://doi.org/10.1594/PANGAEA.859317
Related Identifier https://doi.org/10.1093/icesjms/fsv101
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.859317
Provenance
Creator Sundin, Josefin ORCID logo; Jutfelt, Fredrik ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 9515 data points
Discipline Earth System Research
Spatial Coverage (11.467 LON, 58.250 LAT)
Temporal Coverage Begin 2014-05-10T00:00:00Z
Temporal Coverage End 2014-06-03T00:00:00Z