Moiré Flat Bands in Twisted Double Bilayer Graphene

We investigate twisted double bilayer graphene (TDBG), a four-layer system composed of two AB-stacked graphene bilayers rotated with respect to each other by a small angle. Our ab-initio band structure calculations reveal a considerable energy gap at the charge point neutrality that we assign to the intrinsic symmetric polarization (ISP). We then introduce the ISP effect into the tight-binding parameterization and perform calculations on TDBG models that include lattice relaxation effects down to very small twist angles. We identify a narrow region around the magic angle θ*= 1.3° characterized by a manifold of remarkably flat bands gapped out from other states even without external electric fields. To understand the fundamental origin of the magic angle in TDBG, we construct a continuum model that points to a hidden mathematical link to the twisted bilayer graphene (TBG) model, thus indicating that the band flattening is a fundamental feature of TDBG, and is not a result of external fields.

Identifier
Source https://archive.materialscloud.org/record/2020.0047/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:383
Provenance
Creator Haddadi, Fatemeh; Wu, QuanSheng; J. Kruchkov, Alex; V. Yazyev, Oleg
Publisher Materials Cloud
Publication Year 2020
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering