Seawater carbonate chemistry and fatty acid content of plankton, supplement to: Wang, Tifeng; Tong, Shanying; Liu, Nana; Li, Futian; Wells, Mark L; Gao, Kunshan (2017): The fatty acid content of plankton is changing in subtropical coastal waters as a result of OA: Results from a mesocosm study. Marine Environmental Research, 132, 51-62

DOI

Ocean Acidification (OA) effects on marine plankton are most often considered in terms of inorganic carbon chemistry, but decreasing pH may influence other aspects of cellular metabolism. Here we present the effects of OA on the fatty acid (FA) content and composition of an artificial phytoplankton community (Phaeodactylum tricornutum, Thalassiosira weissflogii, and Emiliania huxleyi) in a fully replicated, 4 m**3 mesocosm study in subtropical coastal waters (Wuyuan Bay, China, 24.52°N, 117.18°E) at present day (400 μatm) and elevated (1000 μatm) pCO2 concentrations. Phytoplankton growth occurred in three phases during the 33-day experiment: an initial exponential growth leading to senescence and a subsequent decline phase. Phytoplankton sampled from these mesocosms were fed to mesozooplankton collected by net haul from Wuyuan Bay. Concentrations of saturated fatty acids (SFA) in both phytoplankton and mesozooplankton remained high under acidified and non-acidified conditions. However, polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) increased significantly more under elevated pCO2 during the late exponential phase (Day 13), indicating increased nutritional value for zooplankton and higher trophic levels. Indeed, uptake rates of the essential FA docosahexaenoic acid (C20:5n3, DHA) increased in mesozooplankton under acidified conditions. However, mesozooplankton grazing rates decreased overall with elevated pCO2. Our findings show that these selected phytoplankton species have a relatively high tolerance to acidification in terms of FA production, and local mesozooplankton in these subtropical coastal waters can maintain their FA composition under end of century ocean acidification conditions.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2018-05-23.

Identifier
DOI https://doi.org/10.1594/PANGAEA.890803
Related Identifier https://doi.org/10.1016/j.marenvres.2017.10.010
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.890803
Provenance
Creator Wang, Tifeng; Tong, Shanying; Liu, Nana; Li, Futian; Wells, Mark L; Gao, Kunshan
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 4287 data points
Discipline Earth System Research
Spatial Coverage (118.200 LON, 24.520 LAT)