Extractions and analyses of reactive phosphorus in the Bering Sea from IODP Holes 323-U1341A and 323-U1341B

DOI

To reconstruct the cycling of reactive phosphorus (P) in the Bering Sea, a P speciation record covering the last ~ 4 Ma was generated from sediments recovered during Integrated Ocean Drilling Program (IODP) Expedition 323 at Site U1341 (Bowers Ridge). A chemical extraction procedure distinguishing between different operationally defined P fractions provides new insight into reactive P input, burial and diagenetic transformations. Reactive P mass accumulation rates (MARs) are ~ 20-110 µmol/cm2/ka, which is comparable to other open ocean locations but orders of magnitude lower than most upwelling settings. We find that authigenic carbonate fluorapatite (CFA) and opal-bound P are the dominant P fractions at Site U1341. An overall increasing contribution of CFA to total P with sediment depth is consistent with a gradual "sink switching" from more labile P fractions (fish remains, Fe oxides, organic matter) to stable authigenic CFA. However, the positive correlation of CFA with Al content implies that a significant portion of the supposedly reactive CFA is non-reactive "detrital contamination" by eolian and/or riverine CFA. In contrast to CFA, opal-bound P has rarely been studied in marine sediments. We find for the first time that opal-bound P directly correlates with excess silica contents. This P fraction was apparently available to biosiliceous phytoplankton at the time of sediment deposition and is a long-term sink for reactive P in the ocean, despite the likelihood for diagenetic re-mobilisation of this P at depth (indicated by increasing ratios of excess silica to opal-bound P). Average reactive P MARs at Site U1341 increase by ~ 25% if opal-bound P is accounted for, but decrease by ~ 25% if 50% of the extracted CFA fraction (based on the lowest CFA value at Site U1341) is assumed to be detrital. Combining our results with literature data, we present a qualitative perspective of terrestrial CFA and opal-bound P deposition in the modern ocean. Riverine CFA input has mostly been reported from continental shelves and margins draining P-rich lithologies, while eolian CFA input is found across wide ocean regions underlying the Northern Hemispheric "dust belt". Opal-bound P burial is important in the Southern Ocean, North Pacific, and likely in upwelling areas. Shifts in detrital CFA and opal-bound P deposition across ocean basins likely occurred over time, responding to changing weathering patterns, sea level, and biogenic opal deposition.

Extraction steps according to Ruttenberg (1992; doi:10.4319/lo.1992.37.7.1460), Schenau and De Lange (2000; doi:10.1016/S0304-4203(01)00037-8) and Latimer et al. (2006; doi:10.1016/j.gca.2006.04.033).

Supplement to: März, Christian; Poulton, Simon W; Wagner, Thomas; Schnetger, Bernhard; Brumsack, Hans-Jürgen (2014): Phosphorus burial and diagenesis in the central Bering Sea (Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle. Chemical Geology, 363, 270-282

Identifier
DOI https://doi.org/10.1594/PANGAEA.857261
Related Identifier https://doi.org/10.1016/j.chemgeo.2013.11.004
Related Identifier https://doi.org/10.1016/j.gca.2006.04.033
Related Identifier https://doi.org/10.4319/lo.1992.37.7.1460
Related Identifier https://doi.org/10.1016/S0304-4203(01)00037-8
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.857261
Provenance
Creator März, Christian; Poulton, Simon W (ORCID: 0000-0001-7621-189X); Wagner, Thomas (ORCID: 0000-0001-5006-625X); Schnetger, Bernhard ORCID logo; Brumsack, Hans-Jürgen ORCID logo
Publisher PANGAEA
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 2740 data points
Discipline Earth System Research
Spatial Coverage (179.008W, 54.033S, 179.009E, 54.033N)