(Table 1) Main morphological features of submarine landslides southwest of Storfjorden Fan (Lobe III)

DOI

This study aims to present an overview of the seafloor morphology and shallow sedimentary structure of the Storfjorden and Kveithola Trough Mouth Fans (TMFs) on the northwestern Barents Sea continental margin. Data have been compiled from two International Polar Year (IPY) cruises (SVAIS, of the BIO Hesperides and EGLACOM of the R/V OGS-Explora) that yielded 15,340 km**2 of multi-beam bathymetry and 9500 km of subbottom seismic profiles. In this area, the continental shelf edge defines three wide and subdued sedimentary lobes forming Storfjorden TMF, one single lobe on Kveithola TMF, and three inter-TMF areas on the continental slope. The two northernmost lobes of Storfjorden TMF (Lobes I and II) are composed by thick (up to 50 m) sequences of glacially derived debris flow deposits interbedded with thin a few metres de-glacial and interglacial deposits. A network of upper slope gullies incises these debris flow deposits as a consequence of subglacial meltwater release at or near the shelf break. Gullies evolve into channels whose morphologic evidence disappears midslope, leaving place to a subdued chevron-like morphological pattern inherited by the preceeding glacial maximum debris flow deposits. A drastic change occurs on the continental slope of Storfjorden TMF Lobe III and Kveithola TMF, where are several translational submarine landslides mostly originated in the upper slope, the majority of which detach at the contact between Middle Weishelian glacigenic debris flows and the overlying acoustically laminated plumites. Dendritic canyon systems only develop in inter-TMF areas. The data suggest that TMF continental slope progradation depends on short-lived episodes of extreme sedimentation during glacial maxima and during the early deglaciation phase, and that an important controlling factor is the mechanism of ice stream retreat from the continental shelf edge. We suggest that the two northern Storfjorden sub-ice streams were composed of thicker and perhaps faster ice progressively draining a distal and larger ice source mainly located on Svalbard. Conversely, the southernmost Storfjorden sub-ice stream and the Kveithola ice stream were fed by a local, smaller marine-based ice dome grounded on Spitsbergenbanken. The ice dome persisted after the LGM, maintaining a local ice drainage system close to the shelf edge whose sedimentary evidence can be found on the continental slope of the southern lobe of Storfjorden TMF and Kveithola TMF. The high degree of lateral variability in the style of sedimentation on TMF slopes suggests that ice stream dynamics may vary considerably within the same glacial trough, and that such variability affects the long-term development of the architecture of TMFs.

Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150

Supplement to: Pedrosa, Mayte T; Camerlenghi, Angelo; De Mol, Ben; Urgeles, Roger; Rebesco, Michele; Lucchi, Renata G (2011): Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough-mouth fans (North West Barents Sea). Marine Geology, 286(1-4), 65-81

Identifier
DOI https://doi.org/10.1594/PANGAEA.818201
Related Identifier https://doi.org/10.1016/j.margeo.2011.05.009
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.818201
Provenance
Creator Pedrosa, Mayte T; Camerlenghi, Angelo ORCID logo; De Mol, Ben; Urgeles, Roger ORCID logo; Rebesco, Michele ORCID logo; Lucchi, Renata G ORCID logo
Publisher PANGAEA
Publication Year 2011
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 42 data points
Discipline Earth System Research
Spatial Coverage (15.100 LON, 74.900 LAT); Spitsbergen slope
Temporal Coverage Begin 2007-07-29T00:00:00Z
Temporal Coverage End 2008-08-04T00:00:00Z