Seawater carbonate chemistry, N/C and P/C biomass ratios, Polyunsaturated fatty acids of Rhodomonas sp. and Phaeodactylum tricornutum, supplement to: Bi, Rong; Ismar, Stefanie M; Sommer, Ulrich; Zhao, Meixun (2017): Environmental dependence of the correlations between stoichiometric and fatty acid-based indicators of phytoplankton nutritional quality. Limnology and Oceanography, 62(1), 334-347


Marine phytoplankton is simultaneously affected by multiple environmental drivers. To-date integrative assessments of multiple combined effects are rare on the relationship between elemental stoichiometry and biochemicals in marine phytoplankton. We investigated responses of stoichiometric (N:C and P:C ratios) and fatty acid-based (polyunsaturated fatty acid, PUFA) indicators of nutritional quality to three N:P supply ratios (10:1, 24:1, and 63:1 mol/mol), three temperatures (12, 18, and 24°C) and two pCO2 levels (560 and 2400 µatm) in the marine phytoplankters Rhodomonas sp. and Phaeodactylum tricornutum. Overall, warming and nutrient deficiency showed dramatic effects, but increased pCO2 had modest effects on the two indicators of nutritional quality. Specifically, warming showed strong positive effects on N:C and P:C ratios in Rhodomonas sp. but negative effects on PUFAs in both species. The low N- and low P-media led to low contents of both nutrients but high contents of PUFAs in the biomass of Rhodomonas sp., while the response of P. tricornutum was more complex: N:C ratios were lowest at the intermediate N:P supply but P:C ratios responded negatively to P deficiency and positively to N deficiency. Large variations in the two indicators of nutritional quality can be attributed to species-specific physiological optima and interactions between the three manipulated variables. Our results suggest that stoichiometric and FA-based indicators of nutritional quality may change differentially in response to warming and nutrient deficiency in marine phytoplankton, highlighting the relevance of simultaneous considerations of the two indicators of nutritional quality, when assessing food web dynamics under future ocean scenarios.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-11-23.

Related Identifier
Related Identifier
Metadata Access
Creator Bi, Rong; Ismar, Stefanie M; Sommer, Ulrich; Zhao, Meixun
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported;
OpenAccess true
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 4633 data points
Discipline Earth System Research