Data from: miR-17-3p exacerbates oxidative damage in human retinal pigment epithelial cells

Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.

Identifier
DOI https://doi.org/10.5061/dryad.cf860
PID https://nbn-resolving.org/urn:nbn:nl:ui:13-2l-y95g
Metadata Access https://easy.dans.knaw.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:easy.dans.knaw.nl:easy-dataset:94112
Provenance
Creator Tian, Bo T.
Publisher Data Archiving and Networked Services (DANS)
Publication Year 2016
Rights info:eu-repo/semantics/openAccess; License: http://creativecommons.org/publicdomain/zero/1.0; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Representation
Resource Type Dataset
Discipline Life Sciences; Medicine