Seawater carbonate chemistry and the nutritional quality of the commercially-harvested turbinid snail Turbo militaris

DOI

Rising levels of atmospheric carbon dioxide are driving ocean warming and acidification. This could cause stress resulting in decreases in nutritional quality of marine species for human consumption, if environmental changes go beyond the optimal range for harvested species. To evaluate this, we used ambient and near-future elevated temperatures and pCO2 to assess impacts on the proximate nutritional composition (moisture, ash, protein, and lipids), fatty acids and trace elements of the foot tissue of Turbo militaris, a commercially harvested marine snail from south-eastern Australia. In a fully orthogonal design, the snails were exposed to ambient seawater conditions (22 ± 0.2 °C, pH 8.13 ± 0.01–450 μatm pCO2), ocean warming (25 ± 0.05 °C), pCO2 ocean acidification (pH 7.85 ± 0.02, ∼880 μatm pCO2) or a combination of both in controlled flow-through seawater mesocosms for 38 days. Moisture, ash, protein and total lipid content of the foot tissue in the turban snails was unaffected by ocean warming or acidification. However, ocean warming caused a reduction in healthful polyunsaturated fatty acids (PUFA) relative to saturated fatty acids (SFA). Under future warming and acidification conditions, there was a significant 3–5% decrease in n–3 fatty acids, which contributed to a decrease in the n–3/n–6 fatty acid ratio. The decrease in n–3 PUFAs, particularly Eicopentanoic acid (EPA), is a major negative outcome from ocean warming, because higher n–3/n–6 ratios in seafood are desirable for human health. Furthermore, ocean warming was found to increase levels of zinc in the tissues. Calcium, iron, macroelements, microelements and the composition of toxic elements did not appear to be affected by ocean climate change. Overall, the major impact from ocean climate change on seafood quality is likely to be a decrease in healthy polyunsaturated fatty acids at higher temperatures.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-05-17.

Supplement to: Ab Lah, Roslizawati; Kelaher, Brendan P; Bucher, Daniel; Benkendorff, Kirsten (2018): Ocean warming and acidification affect the nutritional quality of the commercially-harvested turbinid snail Turbo militaris. Marine Environmental Research, 141, 100-108

Identifier
DOI https://doi.org/10.1594/PANGAEA.902088
Related Identifier https://doi.org/10.1016/j.marenvres.2018.08.009
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.902088
Provenance
Creator Ab Lah, Roslizawati ORCID logo; Kelaher, Brendan P ORCID logo; Bucher, Daniel ORCID logo; Benkendorff, Kirsten ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2018
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 7392 data points
Discipline Earth System Research
Spatial Coverage (153.138 LON, -30.268 LAT)