Seawater carbonate chemistry and conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and delta11B, 2012, supplement to: Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; Böhm, Florian; Thomsen, Jörn; Garbe-Schönberg, Carl-Dieter; Eisenhauer, Anton (2012): Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and d11B. Geochemistry, Geophysics, Geosystems, 13, Q01005

DOI

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Identifier
DOI https://doi.org/10.1594/PANGAEA.778194
Related Identifier https://doi.org/10.1029/2011GC003790
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.778194
Provenance
Creator Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; Böhm, Florian; Thomsen, Jörn; Garbe-Schönberg, Carl-Dieter; Eisenhauer, Anton
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Nisumaa, Anne-Marin
Publication Year 2012
Funding Reference Seventh Framework Programme; Sixth Framework Programme
Rights Creative Commons Attribution 3.0 Unported
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset
Format text/tab-separated-values
Size 531 data points
Discipline Earth System Research