(Table 1) Depth and ages of the chronolostratigraphical boundaries from IODP Sites 303-U1305, U1302 and U1303

DOI

Cores raised during IODP Expedition 303 off southern Greenland (Eirik Ridge site 1305) and off the Labrador Coast (Orphan Knoll site 1302/1303) were analyzed to establish an isotope stratigraphy, respectively for the "inner" and "outer" basins of the Labrador Sea (LS). These isotopic data also provide information on the Atlantic Meridional Overturning Circulation (AMOC), notably with regard to the intensity of the Western Boundary Under Current (WBUC), which is tightly controlled by the production of Denmark Strait Overflow Water (DSOW), and the production of Labrador Sea Water (LSW) in the inner basin through winter cooling and convection. The upper 184 m of sediment at Eirik Ridge spans marine isotope stages (MIS) 32 to 1. At this site, two distinct regimes are observed: prior to MIS 20, the isotopic record resembles that of the open North Atlantic records of the interval, whereas a more site-specific pattern is observed afterwards. This later pattern was characterized by i) high DSOW production rates and strong WBUC during interglacial stages, as indicated by sedimentation rates, ii) large amplitude d18O-shifts from glacial stages to interglacial stages (> 2.5 per mil) and iii) an overall range of d18O-values significantly more positive than before. At Orphan Knoll, the 105 m record spans approximately 800 ka and provides direct information on linkages between the northeastern sector of the Laurentide Ice Sheet and the North Atlantic. At this site, a shift towards larger amplitude glacial/interglacial ranges of d18O-values occurred after MIS 13, although isotopic records bear a typical North Atlantic signature, particularly during MIS 5, in contradiction to those of Eirik Ridge, where substages 5a to 5c are barely recognized. Closer examination of d18O-records in planktic and benthic foraminifera demonstrates the presence of distinct deep-water masses in the inner vs. outer LS basins during MIS 11 and more particularly MIS 5e. Data confirm that the modern AMOC, with LSW formation, seems mostly exclusive to the present interglacial, and also suggest some specificity of each interglacial with respect to the production rate of DSOW and the AMOC, in general.

Sediment depth is given in mcd. The authors compilated Site 303-U1303 and Site 303-U1302, this composite core is given here as Site 303-U1302.

Supplement to: Hillaire-Marcel, Claude; de Vernal, Anne; McKay, Jennifer L (2011): Foraminifer isotope study of the Pleistocene Labrador Sea, northwest North Atlantic (IODP Sites 1302/03 and 1305), with emphasis on paleoceanographical differences between its “inner” and “outer” basins. Marine Geology, 279(1-4, 188-198

Identifier
DOI https://doi.org/10.1594/PANGAEA.767358
Related Identifier https://doi.org/10.1016/j.margeo.2010.11.001
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.767358
Provenance
Creator Hillaire-Marcel, Claude ORCID logo; de Vernal, Anne (ORCID: 0000-0001-5656-724X); McKay, Jennifer L
Publisher PANGAEA
Publication Year 2011
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 102 data points
Discipline Earth System Research
Spatial Coverage (-48.530W, 50.101S, -45.638E, 57.475N); Northwest Atlantic