Ab initio simulation of band-to-band tunneling FETs with single- and few-layer 2-D materials as channels

Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling field-effect-transistors (TFETs) with a 2-D channel material as future electronic circuit components. We demonstrate that single layer transition metal dichalcogenides (TMDs) are not well-suited for TFET applications. There might, however, exist a great variety of 2-D semiconductors that have not even been exfoliated yet: this work pinpoints some of the most promising candidates among them to realize highly efficient TFETs. Single-layer SnTe, As, TiNBr, and Bi are all found to ideally deliver ON-currents larger than 100 μA/μm at 0.5 V supply voltage and 0.1 nA/μm OFF current value. We show that going from single to multiple layers can boost the TFET performance as long as the gain from a narrowing band gap exceeds the loss from the deteriorating gate control. Finally, a 2-D van der Waals heterojunction TFET is revealed to perform almost as well as the best single-layer homojunction, paving the way for research in optimal 2-D material combinations.

Identifier
Source https://archive.materialscloud.org/record/2019.0058/v1
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:216
Provenance
Creator Luisier, Mathieu; Szabo, Aron; Klinkert, Cedric; Campi, Davide; Stieger, Christian; Marzari, Nicola
Publisher Materials Cloud
Publication Year 2019
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering