Oxygen and carbon fluxes from shallow unvegetated sediments in the Clarence Estuary, NSW, Australia under warming and ocean acidification conditions


Dissolved organic/inorganic carbon and oxygen fluxes from whole sediment core incubations subject to temperature and ocean acidification manipulations. Estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of warming (from Δ-3 °C to Δ+5 °C on ambient mean temperatures) and ocean acidification (OA, ~2 times the current partial pressure of CO2, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake, with sediments becoming net sinks of DOC (3.5 to 8.8 mmol-C m-2 d-1) at warmer temperatures (Δ+3 °C and Δ+5 °C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (1 to 4 times greater than under current-pCO2). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, the future climate of warming (Δ+3 °C) and OA may decrease the estuarine export of DOC by ~80 % (~150 Tg-C yr-1) and have a disproportionately large impact on the global DOC budget.

  • DOC: DOC concentrations were measured via continuous-flow wet-oxidation using an Aurora 1030W total organic carbon analyser.* pH: calibrated to 3-point NIST buffer scale (R^2^ = 0.99).
DOI https://doi.org/10.1594/PANGAEA.924460
Related Identifier https://doi.org/10.5194/bg-18-1823-2021
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.924460
Creator Simone, Michelle; Schulz, Kai; Oakes, Joanne; Eyre, Bradley D
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 1053 data points
Discipline Earth System Research
Spatial Coverage (153.324 LON, -29.404 LAT); Australia