Villefranche sur Mer: multistressors experiment March 2012

DOI

The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control ( 360 µatm, 14°C), elevated pCO2 ( 610 µatm, 14°C), elevated temperature ( 410 µatm, 17°C), and elevated pCO2 and temperature ( 690 µatm, 17°C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), heterotrophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. There were no statistically significant effects of ocean warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a and most of the photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a concentrations and were significantly higher under elevated temperature, an effect exacerbated when combined to elevated pCO2 level. In contrast to the other algal groups, the picophytoplankton population (cyanobacteria, mostly Synechococcus) increased throughout the experiment and was more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-depleted conditions in the Mediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-22.

Supplement to: Maugendre, Laure; Gattuso, Jean-Pierre; Louis, Justine; de Kluijver, Anna; Marro, Sophie; Soetaert, Karline; Gazeau, Frédéric (2014): Effect of ocean warming and acidification on a plankton community in the NW Mediterranean Sea. ICES Journal of Marine Science

Identifier
DOI https://doi.org/10.1594/PANGAEA.834159
Related Identifier https://doi.org/10.1093/icesjms/fsu161
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.834159
Provenance
Creator Maugendre, Laure; Gattuso, Jean-Pierre ORCID logo; Louis, Justine ORCID logo; Anna, de Kluijver; Marro, Sophie; Soetaert, Karline ORCID logo; Gazeau, Frédéric ORCID logo; Dufour, Aurélie
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2015
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 265103 https://cordis.europa.eu/project/id/265103 Mediterranean Sea Acidification in a Changing Climate
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 3443 data points
Discipline Earth System Research
Spatial Coverage (7.180 LON, 43.400 LAT)
Temporal Coverage Begin 2012-03-14T08:00:00Z
Temporal Coverage End 2012-03-24T06:00:00Z