Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic


We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to forecast changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean (from 18°N to 76°N and 36°E to 98°W). The VME indicator taxa included Lophelia pertusa , Madrepora oculata, Desmophyllum dianthus, Acanela arbuscula, Acanthogorgia armata, and Paragorgia arborea. The six deep-sea fish species selected were: Coryphaenoides rupestris, Gadus morhua, blackbelly Helicolenus dactylopterus, Hippoglossoides platessoides, Reinhardtius hippoglossoides, and Sebastes mentella. We used an ensemble modelling approach employing three widely-used modelling methods: the Maxent maximum entropy model, Generalized Additive Models, and Random Forest. This dataset contains: 1) Predicted habitat suitability index under present-day (1951-2000) and future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean, using an ensemble modelling approach. 2) Climate-induced changes in the suitable habitat of twelve deep-sea species in the North Atlantic Ocean, as determined by binary maps built with an ensemble modelling approach and the 10-percentile training presence logistic (10th percentile) threshold. 3) Forecasted present-day suitable habitat loss (value=-1), gain (value=1), and acting as climate refugia (value=2) areas under future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean. Areas were identified from binary maps built with an ensemble modelling approach and two thresholds: 10-percentile training presence logistic threshold (10th percentile) and maximum sensitivity and specificity (MSS). Refugia areas are those areas predicted as suitable both under present-day and future conditions. All predictions were projected with the Albers equal-area conical projection centred in the middle of the study area. The grid cell resolution is of 3x3 km.

Related Identifier
Metadata Access
Creator Morato, Telmo; González-Irusta, José Manuel; Domínguez-Carrió, Carlos; Wei, C; Davies, A; Sweetman, Andrew K; Taranto, A H; Beazley, Lindsay; García-Alegre, A; Grehan, Anthony J; Laffargue, P; Javier Murillo, F; Sacau, M; Vaz, S; Kenchington, Ellen L; Arnaud-Haond, Sophie; Callery, Oisín; Chimienti, G; Cordes, E; Egilsdottir, Hronn; Freiwald, André; Gasbarro, R; Gutierrez-Zárate, C; Gianni, M; Gilkinson, Kent; Wareham Hayes, V E; Hebbeln, Dierk; Hedges, K; Henry, Lea Anne; Johnson, Devin S; Koen-Alonso, M; Lirette, C; Mastrototaro, F; Menot, Lenaick; Molodtsova, Tina; Durán Muñoz, P; Orejas, Covadonga; Pennino, Maria Grazia; Puerta, P; Ragnarsson, Stefan Aki; Ramiro-Sánchez, Berta; Rice, J; Rivera, Jaime; Roberts, Murray J; Ross, S W; Rueda, José Luis; Sampaio, Íris; Snelgrove, Paul V R; Stirling, David; Treble, M A; Urra, Javier; Vad, Johanne; van Oevelen, Dick; Watling, L; Walkusz, Wojciech; Wienberg, Claudia; Woillez, M; Levin, L A; Carreiro-Silva, Marina
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Publication Year 2019
Funding Reference Horizon 2020, 678760
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 384 data points
Discipline Earth System Research