Seawater carbonate chemistry and nest guarding behaviour of a temperate wrasse

DOI

Organisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity). Ocean acidification (OA), resulting from anthropogenic emissions of carbon dioxide (CO2), is predicted to impair sensory function and behaviour of fish. However, reproductive behaviours, and parental care in particular, and their role in mediating responses to OA are presently overlooked. Here, we assessed whether the nesting male ocellated wrasse Symphodus ocellatus from sites with different CO2 concentrations showed different behaviours during their breeding season. We also investigated potential re-allocation of the time-budget towards different behavioural activities between sites. We measured the time period that the nesting male spent carrying out parental care, mating and exploring activities, as well as changes in the time allocation between sites at ambient (400 μatm) and high CO2 concentrations (1000 μatm). Whilst the behavioural connectance (i.e., the number of linkages among different behaviours relative to the total amount of linkages) was unaffected, we observed a significant reduction in the time spent on parental care behaviour, and a significant decrease in the guarding activity of fish at the high CO2 sites, with a proportional re-allocation of the time budget in favour of courting and wandering around, which however did not change between sites. This study shows behavioural differences in wild fish living off volcanic CO2 seeps that could be linked to different OA levels, suggesting that behavioural plasticity may potentially act as a mechanism for buffering the effects of ongoing environmental change. A reallocation of the time budget between key behaviours may play a fundamental role in determining which marine organisms are thriving under projected OA.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-12-02.

Identifier
DOI https://doi.org/10.1594/PANGAEA.938921
Related Identifier https://doi.org/10.1016/j.scitotenv.2021.149376
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.938921
Provenance
Creator Spatafora, Davide; Quattrocchi, F; Cattano, Carlo; Badalamenti, F; Milazzo, Marco
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2021
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 1550 data points
Discipline Earth System Research