Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

DOI

Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2. However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 µatm) and high (912 µatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 µatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-03-11.

Supplement to: Welch, Megan J; Watson, Sue-Ann; Welsh, Justin Q; McCormick, Mark I; Munday, Philip L (2014): Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Climate Change, 4(12), 1086-1089

Identifier
DOI https://doi.org/10.1594/PANGAEA.843970
Related Identifier https://doi.org/10.1038/nclimate2400
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.843970
Provenance
Creator Welch, Megan J; Watson, Sue-Ann ORCID logo; Welsh, Justin Q; McCormick, Mark I ORCID logo; Munday, Philip L ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 9522 data points
Discipline Earth System Research
Spatial Coverage (146.490 LON, -18.620 LAT)
Temporal Coverage Begin 2012-09-01T00:00:00Z
Temporal Coverage End 2012-09-30T00:00:00Z