Seawater carbonate chemistry and biological processes of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) during experiments, 2011

DOI

All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Supplement to: Rickaby, Rosalind E M; Henderiks, Jorijntje; Young, J N (2010): Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Climate of the Past, 6(6), 771-785

Identifier
DOI https://doi.org/10.1594/PANGAEA.771912
Related Identifier https://doi.org/10.5194/cp-6-771-2010
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.771912
Provenance
Creator Rickaby, Rosalind E M ORCID logo; Henderiks, Jorijntje ORCID logo; Young, J N
Publisher PANGAEA
Contributor Nisumaa, Anne-Marin
Publication Year 2010
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 211384 https://cordis.europa.eu/project/id/211384 European Project on Ocean Acidification; Sixth Framework Programme https://doi.org/10.13039/100011103 Crossref Funder ID 511106 https://cordis.europa.eu/project/id/511106 European network of excellence for Ocean Ecosystems Analysis
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1647 data points
Discipline Earth System Research