Seawater carbonate chemistry and early development and escape behavior of marine medaka (Oryzias melastigma)

DOI

Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO2): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatching rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO2 levels that are predicted as a result of ocean acidification in the next 100–200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO2 projected for the future.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2018-05-23.

Supplement to: Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun (2017): Impact of ocean acidification on the early development and escape behavior of marine medaka ( Oryzias melastigma ). Marine Environmental Research, 131, 10-18

Identifier
DOI https://doi.org/10.1594/PANGAEA.890639
Related Identifier https://doi.org/10.1016/j.marenvres.2017.09.001
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.890639
Provenance
Creator Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1377 data points
Discipline Earth System Research