Seawater carbonate chemistry, biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217) in a laboratory experiment

DOI

Experimental results related to the effects of ocean acidification on planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments that address the effects of changes in CO2 concentrations on heterotrophic microbes are very scarce, despite the major role of these organisms in the marine carbon cycle. We tested the direct effect of an elevated CO2 concentration (1000 ppmv) on the biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of 2 isolates belonging to 2 relevant marine bacterial families, Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our results demonstrate that, contrary to some expectations, high pCO2 did not negatively affect bacterial growth but increased growth efficiency in the case of MED217. The elevated partial pressure of CO2 (pCO2) caused, in both cases, higher rates of CO2 fixation in the dissolved fraction and, in the case of MED217, lower respiration rates. Both responses would tend to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO2 concentrations and ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-04-01.

Supplement to: Teira, Eva; Fernández, Ana; Alvarez-Salgado, Xose Anton; García-Martín, Enma Elena; Serret, Pablo; Sobrino, Cristina (2012): Response of two marine bacterial isolates to high CO2 concentration. Marine Ecology Progress Series, 453, 27-36

Identifier
DOI https://doi.org/10.1594/PANGAEA.831372
Related Identifier https://doi.org/10.3354/meps09644
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.831372
Provenance
Creator Teira, Eva ORCID logo; Fernández, A ORCID logo; Alvarez-Salgado, Xose Anton; García-Martín, Enma Elena; Serret, Pablo ORCID logo; Sobrino, Cristina ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 168 data points
Discipline Earth System Research