Seawater carbonate chemistry and mortality and standard length of California Grunion Leuresthes tenuis

DOI

Ocean acidification can reduce the growth and survival of marine species during their larval stages. However, if populations have the genetic capacity to adapt and increase their tolerance of low pH and high pCO2 levels, this may offset the harmful effects of ocean acidification. By combining controlled breeding experiments with laboratory manipulations of seawater chemistry, we evaluated genetic variation in tolerance of ocean acidification conditions for a nearshore marine fish, the California Grunion (Leuresthes tenuis). Our results indicated that acidification conditions increased overall mortality rates of grunion larvae, but did not have a significant effect on growth. Groups of larvae varied widely with respect to mortality and growth rates in both ambient and acidified conditions. We demonstrate that the potential to evolve in response to ocean acidification is best described by considering additive genetic variation in fitness‐related traits under both ambient and acidified conditions, and by evaluating the genetic correlation between traits expressed in these environments. We used a multivariate animal model to estimate additive genetic (co)variance in larval growth and mortality rates under both ambient and acidified conditions (low pH/high pCO2). Our results suggest appreciable genetic variation in larval mortality rates (h2Ambient = 0.120; h2Acidified = 0.183; rG = 0.460), but less genetic variation in growth (h2Ambient = 0.092; h2Acidified = 0.101; rG = 0.135). Maternal effects on larval mortality rates accounted for 26‐36% of the variation in phenotypes, but maternal effects accounted for only 8% of the variation in growth. Collectively, our estimates of genetic variation and covariation suggest that populations of California Grunion have the capacity to adapt relatively quickly to long‐term changes in ocean chemistry.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-09-18.

Identifier
DOI https://doi.org/10.1594/PANGAEA.922982
Related Identifier https://doi.org/10.1111/eva.12739
Related Identifier https://doi.org/10.5061/dryad.kf0h22h
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.922982
Provenance
Creator Tasoff, Alexander J; Johnson, Darren W
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 12083 data points
Discipline Earth System Research