Growth and photosynthesis of a diatom Cylindrotheca closterium grown under elevated CO2 in the presence of solar UV radiation, supplement to: Wu, Xiaojuan; Gao, Guang; Giordano, Mario; Gao, Kunshan (2012): Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundamental and Applied Limnology, 180(4), 279-290


The combination of elevated CO2 and the increased acidity in surface oceans is likely to have an impact on photosynthesis via its effects on inorganic carbon speciation and on the overall energetics of phytoplankton. Exposure to UV radiation (UVR) may also have a role in the response to elevated CO2 and acidification, due to the fact that UVR may variously impact on photosynthesis and because of the energy demand of UVR defense. The cell may gain energy by down-regulating the CO2 concentrating mechanism, which may lead to a greater ability to cope with UVR and/or higher growth rates. In order to clarify the interplay of cell responses to increasing CO2 and UVR, we investigated the photosynthetic response of the marine and estuarine diatom Cylindrotheca closterium f. minutissima cultured at either 390 (ambient) or 800 (elevated) ppmv CO2, while exposed to solar radiation with or without UVR (UVR, 280-400 nm). After a 6 day acclimation period, the growth rate of cells was little affected by elevated CO2 and no obvious correlation with the radiation dose (for both PAR and PAR + UV treatments) could be detected. However, the relative electron transport rate was reduced and was more sensitive to UVR in cells main - tained at elevated CO2 as compared to cells cultured at ambient CO2. The CO2 concentrating mechanism was down regulated at 800 ppmv CO2, but was apparently not completely switched off. These data are discussed with respect to their significance in the context of global climate change.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-11-08.

Related Identifier
Related Identifier
Metadata Access
Creator Wu, Xiaojuan; Gao, Guang; Giordano, Mario; Gao, Kunshan
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported;
OpenAccess true
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 3736 data points
Discipline Earth System Research