Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish

DOI

We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-06-19.

Supplement to: Munday, Philip L; Pratchett, M S; Dixson, Danielle L; Donelson, Jennifer M; Endo, Geoff G K; Reynolds, Adam D; Knuckey, Richard (2013): Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Marine Biology, 160(8), 2137-2144

Identifier
DOI https://doi.org/10.1594/PANGAEA.833440
Related Identifier https://doi.org/10.1007/s00227-012-2111-6
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.833440
Provenance
Creator Munday, Philip L ORCID logo; Pratchett, M S ORCID logo; Dixson, Danielle L ORCID logo; Donelson, Jennifer M ORCID logo; Endo, Geoff G K; Reynolds, Adam D; Knuckey, Richard
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2013
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 314 data points
Discipline Earth System Research