Carbonate chemistry, community metabolism, PAR, temperature and salinity of One Tree Island reef

DOI

There are few in situ studies showing how net community calcification (Gnet) of coral reefs is related to carbonate chemistry, and the studies to date have demonstrated different predicted rates of change. In this study, we measured net community production (Pnet), Gnet, and carbonate chemistry of a reef flat at One Tree Island, Great Barrier Reef. Diurnal pCO2 variability of 289-724 µatm was driven primarily by photosynthesis and respiration. The reef flat was found to be net autotrophic, with daily production of ~ 35 mmol C/m2/d and net calcification of ~ 33 mmol C/m2/d . Gnet was strongly related to Pnet, which drove a hysteresis pattern in the relationship between Gnet and aragonite saturation state (Omega ar). Although Pnet was the main driver of Gnet, Omega ar was still an important factor, where 95% of the variance in Gnet could be described by Pnet and Omega ar. Based on the observed in situ relationship, Gnet would be expected to reach zero when Omega ar is 2.5. It is unknown what proportion of a decline in Gnet would be through reduced calcification and what would occur through increased dissolution, but the results here support predictions that overall calcium carbonate production will decline in coral reefs as a result of ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-08-21.

Supplement to: Shaw, Emily; Phinn, Stuart R; Tilbrook, Bronte; Steven, Andrew D L (2015): Natural in situ relationships suggest coral reef calcium carbonate production will decline with ocean acidification. Limnology and Oceanography

Identifier
DOI https://doi.org/10.1594/PANGAEA.835109
Related Identifier https://doi.org/10.1002/lno.10048
Related Identifier https://doi.org/10.1371/journal.pone.0112161.s001
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.835109
Provenance
Creator Shaw, Emily ORCID logo; Tilbrook, Bronte ORCID logo; Steven, Andrew D L; Phinn, Stuart R ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 1810 data points
Discipline Earth System Research
Spatial Coverage (152.039W, -23.510S, 152.092E, -23.478N)
Temporal Coverage Begin 2013-11-08T17:28:00Z
Temporal Coverage End 2013-11-22T13:56:00Z