Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus

DOI

A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-09-09.

Supplement to: Diner, Rachel E; Benner, Ina; Passow, Uta; Komada, Tomoko; Carpenter, E J; Stillman, Jonathon H (2015): Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus. Marine Biology, 162(6), 1287-1305

Identifier
DOI https://doi.org/10.1594/PANGAEA.849341
Related Identifier https://doi.org/10.1007/s00227-015-2669-x
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.849341
Provenance
Creator Diner, Rachel E; Benner, Ina; Passow, Uta; Komada, Tomoko; Carpenter, E J; Stillman, Jonathon H ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2015
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 4298 data points
Discipline Earth System Research