Seawater carbonate chemistry and oxygen uptake rates of coral reef fishes

DOI

Ocean acidification, resulting from increasing atmospheric carbon dioxide (CO2) emissions, can affect the physiological performance of some fishes. Most studies investigating ocean acidification have used stable pCO2 treatments based on open ocean predictions. However, nearshore systems can experience substantial spatial and temporal variations in pCO2. Notably, coral reefs are known to experience diel fluctuations in pCO2, which are expected to increase on average and in magnitude in the future. Though we know these variations exist, relatively few studies have included fluctuating treatments when examining the effects of ocean acidification conditions on coral reef species. To address this, we exposed two species of damselfishes, Amblyglyphidodon curacao and Acanthochromis polyacanthus, to ambient pCO2, a stable elevated pCO2 treatment, and two fluctuating pCO2 treatments (increasing and decreasing) over an 8 h period. Oxygen uptake rates were measured both while fish were swimming and resting at low-speed. These 8 h periods were followed by an exhaustive swimming test (Ucrit) and blood draw examining swimming metrics and haematological parameters contributing to oxygen transport. When A. polyacanthus were exposed to stable pCO2 conditions (ambient or elevated), they required more energy during the 8 h trial regardless of swimming type than fish exposed to either of the fluctuating pCO2 treatments (increasing or decreasing). These results were reflected in the oxygen uptake rates during the Ucrit tests, where fish exposed to fluctuating pCO2 treatments had a higher factorial aerobic scope than fish exposed to stable pCO2 treatments. By contrast, A. curacao showed no effect of pCO2 treatment on swimming or oxygen uptake metrics. Our results show that responses to stable versus fluctuating pCO2 differ between species – what is stressful for one species many not be stressful for another. Such asymmetries may have population- and community-level impacts under higher more variable pCO2 conditions in the future.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2020) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-12-11.

Identifier
DOI https://doi.org/10.1594/PANGAEA.925711
Related Identifier https://doi.org/10.1016/j.scitotenv.2020.140334
Related Identifier https://doi.org/10.25903/5eec083a371b3
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.925711
Provenance
Creator Hannan, Kelly D ORCID logo; Munday, Philip L ORCID logo; Rummer, Jodie L ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 99314 data points
Discipline Earth System Research