Palynological and organic geochemical data from middle Eocene Southwest Pacific sediments

DOI

Global climate cooled from the early Eocene hothouse (~52-50 Ma) to the latest Eocene (~34 Ma). At the same time, the tectonic evolution of the Southern Ocean was characterized by the opening and deepening of circum-Antarctic gateways, which affected both surface- and deep-ocean circulation. The Tasmanian Gateway played a key role in regulating ocean throughflow between Australia and Antarctica. Southern Ocean surface currents through and around the Tasmanian Gateway have left recognizable tracers in the spatiotemporal distribution of plankton fossils, including organic-walled dinoflagellate cysts. This spatiotemporal distribution depends on both the physico-chemical properties of the water masses and the path of surface-ocean currents. The extent to which climate and tectonics have influenced the distribution and composition of surface currents and thus fossil assemblages has, however, remained unclear. In particular, the contribution of climate change to oceanographic changes, superimposed on long-term and gradual changes induced by tectonics, is still poorly understood. To disentangle the effects of tectonism and climate in the southwest Pacific Ocean, we target a climatic deviation from the long-term Eocene cooling trend, the Middle Eocene Climatic Optimum (MECO; ~40 Ma). This 500-thousand-year-long phase of global warming was unrelated to regional tectonism, and thus provides a test case to investigate the ocean's physiochemical response to climate change alone. We reconstruct changes in surface-water circulation and temperature in and around the Tasmanian Gateway during the MECO through new palynological and organic geochemical records from the central Tasmanian Gateway (Ocean Drilling Program Site 1170), the Otway Basin (southeastern Australia) and the Hampden Beach section (New Zealand). Our results confirm that dinocyst communities track specific surface-ocean currents, yet the variability within the communities can be driven by superimposed temperature change. Together with published results from the east of the Tasmanian Gateway, our new results suggest a shift in surface-ocean circulation during the peak of MECO warmth. Simultaneous with high sea-surface temperatures in the Tasmanian Gateway area, pollen assemblages indicate warm temperate rainforests with paratropical elements along the southeastern margin of Australia. Finally, based on new age constraints we suggest that a regional southeast Australian transgression might have been coincident with the MECO.

Identifier
DOI https://doi.org/10.1594/PANGAEA.922215
Related Identifier https://doi.org/10.5194/cp-16-1667-2020
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.922215
Provenance
Creator Cramwinckel, Margot J (ORCID: 0000-0002-6063-836X); Woelders, Lineke; Huurdeman, Emiel P; Peterse, Francien ORCID logo; Gallagher, Stephen John ORCID logo; Pross, Jörg; Burgess, Catherine E; Reichart, Gert-Jan ORCID logo; Sluijs, Appy ORCID logo; Bijl, Peter K ORCID logo
Publisher PANGAEA
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Bundled Publication of Datasets; Collection
Format application/zip
Size 4 datasets
Discipline Earth System Research
Spatial Coverage (143.150W, -47.150S, 170.830E, -38.693N)
Temporal Coverage Begin 2000-04-05T13:00:00Z
Temporal Coverage End 2015-02-23T00:00:00Z