Large-cavity coronoids with different inner and outer edge structures

DOI

Coronoids, polycyclic aromatic hydrocarbons with geometrically defined cavities, are promising model structures of porous graphene. This record contains data to support our recent research where we report the on-surface synthesis of C168 and C140 coronoids, referred to as [6]- and [5]coronoid, respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large cavities (>1 nm) with inner zigzag edges, distinct from their outer armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy unveil structural and electronic properties in accordance with those obtained from density functional theory calculations. Detailed analysis of ring current effects identifies the rings with the highest aromaticity of these coronoids, whose pattern matches their Clar structure. The pores of the obtained coronoids offer intriguing possibilities of further functionalization toward advanced host–guest applications.

Identifier
DOI https://doi.org/10.24435/materialscloud:9p-j0
Source https://archive.materialscloud.org/record/2020.83
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:468
Provenance
Creator Di Giovannantonio, Marco; Yao, Xuelin; Eimre, Kristjan; Urgel, José I.; Ruffieux, Pascal; Pignedoli, Carlo A.; Müllen, Klaus; Fasel, Roman; Narita, Akimitsu
Publisher Materials Cloud
Publication Year 2020
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering