Colimitation of the unicellular photosynthetic diazotroph Crocosphaera watsonii by phosphorus, light, and carbon dioxide

DOI

We describe interactive effects of total phosphorus (total P = 0.1-4.0 µmol/L; added as H2NaPO4), irradiance (40 and 150 µmol quanta/m**2/s), and the partial pressure of carbon dioxide (P-CO2; 19 and 81 Pa, i.e., 190 and 800 ppm) on growth and CO2- and dinitrogen (N-2)-fixation rates of the unicellular N-2-fixing cyanobacterium Crocosphaera watsonii (WH0003) isolated from the Pacific Ocean near Hawaii. In semicontinuous cultures of C. watsonii, elevated P-CO2 positively affected growth and CO2- and N-2-fixation rates under high light. Under low light, elevated P-CO2 positively affected growth rates at all concentrations of P, but CO2- and N-2-fixation rates were affected by elevated P-CO2 only when P was low. In both high-light and low-light cultures, the total P requirements for growth and CO2- and N-2-fixation declined as P-CO2 increased. The minimum concentration (C-min) of total P and half-saturation constant (K-1/2) for growth and CO2- and N-2-fixation rates with respect to total P were reduced by 0.05 µmol/L as a function of elevated P-CO2. We speculate that low P requirements under high P-CO2 resulted from a lower energy demand associated with carbon-concentrating mechanisms in comparison with low-P-CO2 cultures. There was also a 0.10 µmol/L increase in C-min and K-1/2 for growth and N-2 fixation with respect to total P as a function of increasing light regardless of P-CO2 concentration. We speculate that cellular P concentrations are responsible for this shift through biodilution of cellular P and possibly cellular P uptake systems as a function of increasing light. Changing concentrations of P, CO2, and light have both positive and negative interactive effects on growth and CO2-, and N-2-fixation rates of unicellular oxygenic diazotrophs like C. watsonii.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-09-01.

Identifier
DOI https://doi.org/10.1594/PANGAEA.835394
Related Identifier https://doi.org/10.4319/lo.2013.58.4.1501
Related Identifier http://www.bco-dmo.org/deployment/59043
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.835394
Provenance
Creator Garcia, Nathan S; Fu, Feixue; Hutchins, David A
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2013
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 6388 data points
Discipline Earth System Research