Seawater carbonate chemistry and physiology of reef-building corals (Siderastrea siderea, Pseudodiploria strigosa)

DOI

Global change, including rising temperatures and acidification, threatens corals globally. Although bleaching events reveal fine-scale patterns of resilience, traits enabling persistence under global change remain elusive. We conducted a 95-d controlled-laboratory experiment investigating how duration of exposure to warming (28, 31°C), acidification (pCO2  343 [present day], 663 [end of century], 3109 [extreme] μatm), and their combination influences physiology of reef-building corals (Siderastrea siderea, Pseudodiploria strigosa) from two reef zones on the Belize Mesoamerican Barrier Reef System. Every 30 d, net calcification rate, host protein and carbohydrate, chlorophyll a, and symbiont density were quantified for the same coral individual to characterize acclimation potential under global change. Coral physiologies of the two species were differentially affected by stressors and exposure duration was found to modulate these responses. Siderastrea siderea exhibited resistance to end of century pCO2 and temperature stress, but calcification was negatively affected by extreme pCO2. However, S. siderea calcification rates remained positive after 95 d of extreme pCO2 conditions, suggesting acclimation. In contrast, P. strigosa was more negatively influenced by elevated temperatures, which reduced most physiological parameters. An exception was nearshore P. strigosa, which maintained calcification rates under elevated temperature, suggesting local adaptation to the warmer environment of their natal reef zone. This work highlights how tracking coral physiology across various exposure durations can capture acclimatory responses to global change stressors.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-12-07.

Identifier
DOI https://doi.org/10.1594/PANGAEA.939041
Related Identifier https://doi.org/10.1002/lno.11863
Related Identifier https://doi.org/10.5281/zenodo.4914428
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.939041
Provenance
Creator Aichelman, Hannah E; Bove, Colleen B; Castillo, Karl D; Boulton, Jessica M; Knowlton, Alyssa C; Nieves, Olivia C; Ries, Justin B; Davies, Sarah W
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2021
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 9372 data points
Discipline Earth System Research
Spatial Coverage (-88.573W, 16.117S, -88.261E, 16.190N)
Temporal Coverage Begin 2015-06-01T00:00:00Z
Temporal Coverage End 2015-06-30T00:00:00Z