Mercury Benefits of Climate Policy in China: Addressing the Paris Agreement and Minamata Convention Simultaneously

DOI

National commitments under the Paris Agreement on climate change interact with other global environmental objectives, such as those of the Minamata Convention on Mercury. We assess how mercury emissions and deposition reductions from national climate policy in China under the Paris Agreement could contribute to the country's commitments under the Minamata Convention. We examine emissions under climate policy scenarios developed using a computable general equilibrium model of China's economy, end-of-pipe control scenarios that meet China's commitments under the Minamata Convention, and these policies in combination, and evaluate deposition using a global atmospheric transport model. We find climate policy in China can provide mercury benefits when implemented with Minamata policy, achieving in the year 2030 approximately 5\% additional reduction in mercury emissions and deposition in China when climate policy achieves a 5% reduction per year in carbon intensity (CO2 emissions 9.7 Gt in 2030). This corresponds to 63 Mg additional mercury emissions reductions in 2030 when implemented with Minamata Convention policy, compared to Minamata policy implemented alone. Climate policy provides emissions reductions in sectors not considered under the Minamata Convention, such as residential combustion. This changes the combination of sectors that contribute to emissions reductions.This data submission includes scripts to project China's 2012 mercury emissions from the Emissions Database for Global Atmospheric Research (EDGAR) and prepare them for input to the global chemical transport model, GEOS-Chem. It also includes scripts to plot projected emissions and plot deposition results (with required raw results from GEOS-Chem) for the figures included in the Environmental Science and Technology article.

Identifier
DOI https://doi.org/10.1594/PANGAEA.911800
Related Identifier https://doi.org/10.1021/acs.est.9b06741
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.911800
Provenance
Creator Mulvaney, Kathleen M ORCID logo; Selin, Noelle E; Giang, Amanda; Muntean, Marilena; Li, Chiao-Ting; Zhang, Da; Angot, Hélène ORCID logo; Thackray, Colin P; Karplus, Valerie J ORCID logo
Publisher PANGAEA
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 40 data points
Discipline Earth System Research
Spatial Coverage (109.000 LON, 36.000 LAT)