Seawater carbonate chemistry and respiration of blue crab Callinectes sapidus


Quantifying the physiological impact of environmental stressors on living organisms is critical to predicting the response of any given species to future climate scenarios. Oxygen consumption rates (μmol/g/min) were measured to examine the physiological response of the juvenile blue crab Callinectes sapidus from the Chesapeake Bay (Patuxent River, Maryland) to elevated temperature and dissolved carbon dioxide in water (pCO2) reflective of projected future climate scenarios. Treatment levels were selected to represent current conditions in the Chesapeake Bay (26°C and 800 μatm) and conditions predicted to occur by the year 2100 (31°C and 8,000 μatm). Crabs were exposed in a factorial design to these conditions throughout two successive molts (approximately 30 days). At the end of the exposure, the oxygen consumption rates of individual crabs were determined over at least a 10-h period using a flow-through respiration chamber equipped with optical oxygen electrodes. No significant effect of temperature or pCO2 on oxygen consumption was observed, suggesting the absence of a respiratory impact of these two climate stressors on juvenile blue crabs. Oxygen consumption rates were also determined for crabs that experienced a rapid increase in temperature without prior acclimation. The oxygen consumption rate of crabs may have acclimated to increased temperature during the 30-day exposure period before respiratory measurement. This potential acclimation, combined with high individual variability, and a relatively small difference in temperature treatments are likely the cause for the lack of a statistically significant difference in mean oxygen consumption rates by temperature in the core experiment. The results of this study suggest that the blue crab may be quite resilient to future climate stressors and underscore the need for species-specific studies to quantify the effects of climate change on estuarine crustaceans.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-05-6.

Related Identifier
Related Identifier
Metadata Access
Creator Glandon, Hillary L; Paynter, Kennedy T; Rowe, Christopher L; Miller, Thomas J
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 282 data points
Discipline Earth System Research