Seawater carbonate chemistry and coral-coral competition

DOI

As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, P. astreoides suppressed the photosynthetic potential of M. cavernosa by 100% in areas of contact under both present (28.5°C and 400 μatm pCO2) and predicted future (30.0°C and 1000 μatm pCO2) conditions. In contrast, under present conditions M. cavernosa reduced the photosynthetic potential of P. astreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between P. astreoides and O. faveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and O. faveolata was generating larger lesions on P. astreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2020) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-12-25.

Identifier
DOI https://doi.org/10.1594/PANGAEA.926648
Related Identifier https://doi.org/10.1371/journal.pone.0235465
Related Identifier https://doi.org/10.5061/dryad.7pvmcvdqr
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.926648
Provenance
Creator Johnston, Nicole K; Campbell, Justin E; Paul, V J; Hay, Mark E
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 19272 data points
Discipline Earth System Research